CYBER SECURITY ENGINEERING, MS

Banner Code: EC-MS-CYSE

Phone: 703-993-6760 Email: cysegrad@gmu.edu Website: https://cybersecurity.sitemasonry.gmu.edu/academics/masterscience-cyber-security-engineering

The field of cyber security engineering is concerned with the development of cyber-resilient systems that include the protection of physical as well as computer and network systems. It requires a holistic and proactive approach in engineering the design of systems, with cybersecurity incorporated from the beginning of system development all the way throughout the system's life cycle.

The purpose of the MS in Cyber Security Engineering is to provide students with the currently rare combination of highly technical knowledge and skills, cyber security expertise, and a comprehensive systems engineering perspective. The program provides theory and practice on the design, planning, and management of systems and procedures for protecting critical physical and cyber infrastructure from external threats, including terrorism. Students will be equipped with deep technical foundations of cyber security in the form of software, hardware, networking, and cryptography, as well as systems engineering tools and methods to design and secure complex cyber physical systems. Topics in the program include homeland security policies, critical infrastructure policies, information assurance cybersecurity quantification, matrix vulnerability assessment, threat assessment, physical security, personnel security, operational security, contingency planning, case analyses of specific industries and systems, redundancy planning, emergency and disaster planning, security systems, and intelligence operations.

Graduates are prepared to design and implement secure complex and cyber-physical systems consisting of software, hardware, and networking components; respond to, investigate, and remediate incidents involving these systems; and develop offensive and defensive tools and techniques to attack and secure these systems.

At the doctoral level, the department offers a concentration in the PhD in Information Technology (https://catalog.gmu.edu/colleges-schools/ engineering-computing/information-technology-phd/) program.

Admissions & Policies

Admissions

The MS in Cyber Security Engineering will build on the body of knowledge acquired in undergraduate programs of study in engineering, computer science, or closely related disciplines. As such, applicants will be expected to have a bachelor's degree in engineering, computer science, or closely related disciplines and to have completed the engineering math sequence as well as courses in probability and statistics, and computer science. A minimum undergraduate GPA of 3.00 is required.

Domestic students lacking a working background in engineering mathematics and computer systems may be admitted provisionally and required to take one or more foundation courses.

· For the engineering mathematics, the department may require SYST 500 Quantitative Foundations for Systems Engineering or an equivalent course with an intensive review of undergraduate

engineering mathematics, including matrix algebra, calculus, differential equations, probability and statistics.

- · Students who have not completed a two-semester calculus sequence and matrix algebra will be required to complete these courses prior to taking SYST 500.
- · For the computer systems background, the department may require CS 531 Computer Systems and Fundamentals of Systems Programming or an equivalent course with systems level of programming with an emphasis on data structures and interfacing with operating systems.

Policies

Students must complete a minimum of 30 graduate credits beyond the bachelor's degree with a GPA of 3.00 or higher, with no more than 6 credit hours of C grades. Please see AP.3 (http://catalog.gmu.edu/ policies/academic/grading/) for additional information. The plan of study includes a 21 credit required Core component which includes a mandatory capstone course, and 9 credits of electives.

Requirements

Degree Requirements

Total credits: 30

Plan of Study:

Before the end of the first semester, students must have a plan of study approved by their academic advisor. Students are responsible for keeping the plan of study current before the beginning of each semester and get advisor's approval for any changes to the plan.

Thesis:

Students, with the consent of the program director and of the faculty advisor, may also elect a 6-credit thesis (CYSE 799 Cyber Security Engineering Master Thesis). The thesis must be guided and approved by a committee of three appropriate faculty members and presented at an appropriate forum. Please see AP.6.9.3 (https://catalog.gmu.edu/ policies/academic/graduate-policies/#ap-6-9-3) for additional information.

Required Coursework:

Code	Title	Credits
CYSE 550	Cyber Security Engineering Fundamentals	3
CYSE 570	Fundamentals of Operating Systems	3
CYSE 580	Hardware and Cyber Physical Systems	3
CYSE 610	Networks and Cyber Security	3
CYSE 587	Cyber Security Systems Engineering	3
CYSE 690	Cyber Security Engineering Capstone Project	3
or CYSE 799	Cyber Security Engineering Master Thesis	
Total Credits		18

Total Credits

No Concentration

Code Electives	Title	Credits		
Select four courses from the following (three in case of MS 12				
Thesis option):	from the following (three in case of MS	12		
AIT 670	Cloud Computing Security			
BIOD 760	National Security Technology and Policy			
CYSE 521	Industrial Control Systems Security			
CYSE 650	Topics in Cyber Security Engineering			
CYSE 670	Secure Design of Connected and Automated Vehicles			
CYSE 680	Advanced Manufacturing Automation Security			
CYSE 681	Secure Energy Efficient Supply Chains			
CYSE 682	Formal Methods for Cyber Physical Systems Security			
CYSE 683	Reverse Engineering Industrial Automation			
CYSE 685	Unmanned Aerial Systems Security			
CYSE 698	Independent Study and Research			
CYSE 750	Advanced Topics in Cyber Security Engineering			
CYSE 799	Cyber Security Engineering Master Thesis (If thesis option is chosen.)			
DFOR 761	Malware Reverse Engineering			
DFOR 767	Penetration Testing in Digital Forensics			
DFOR 775	Kernel Forensics and Analysis			
ECE 527	Learning From Data			
ECE 646	Applied Cryptography			
ECE 746	Advanced Applied Cryptography			
GBUS 540	Analysis of Financial Decisions			
INFS 622	Information Systems Analysis and Design			
ISA 673	Operating Systems Security			
ISA 681	Secure Software Design and Programming			
or SWE 681	Secure Software Design and Programming			
SYST 548	Technologies and Security for Cryptocurrencies and Financial Transactions			
Total Credits		12		

Concentration in Secure Advanced Manufacturing and Supply Chains (SAMS)

Code	Title	Credits	
Required Coursework			
CYSE 680	Advanced Manufacturing Automation Security	3	
CYSE 681	Secure Energy Efficient Supply Chains	3	
Electives		6	
CYSE 521	Industrial Control Systems Security		
CYSE 682	Formal Methods for Cyber Physical Systems Security		
CYSE 683	Reverse Engineering Industrial Automation		

CYSE 799	Cyber Security Engineering Master Thesis	
	(If thesis option is chosen.)	
Total Credits		12

Accelerated Master's

Cyber Security Engineering, BS/Cyber Security Engineering, Accelerated MS

Overview

Highly-gualified undergraduates may be admitted to the bachelor's/ accelerated master's program and obtain a BS in Cyber Security Engineering (http://catalog.gmu.edu/colleges-schools/engineering/ cyber-security-engineering/cyber-security-engineering-bs/) and an MS in Cyber Security Engineering (http://catalog.gmu.edu/colleges-schools/ engineering/cyber-security-engineering/cyber-security-engineering-ms/) in an accelerated time-frame after satisfactory completion of a minimum of 144 credits.

See AP.6.7 Bachelor's/Accelerated Master's Degree (http:// catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-7) for policies related to this program.

This accelerated option is offered by the Department of Cyber Security Engineering (http://catalog.gmu.edu/colleges-schools/engineering/ cyber-security-engineering/).

Students in an accelerated degree program must fulfill all university requirements for the master's degree. For policies governing all graduate degrees, see AP.6 Graduate Policies (http://catalog.gmu.edu/policies/ academic/graduate-policies/).

BAM Pathway Admission Requirements

Applicants to all graduate programs at George Mason University must meet the admission standards and application requirements for graduate study as specified in Graduate Admissions Policies (http:// catalog.gmu.edu/admissions/graduate-policies/) and Bachelor's/ Accelerated Master's Degree policies (http://catalog.gmu.edu/policies/ academic/graduate-policies/#ap-6-7).

Students will be considered for admission into the BAM Pathway after completion of a minimum of 60 credits with an overall GPA of 3.0.

Students who are accepted into the BAM Pathway will be allowed to register for graduate level courses after successful completion of a minimum of 75 undergraduate credits and course-specific prerequisites.

Accelerated Master's Admission Requirements

Students already admitted in the BAM Pathway will be admitted to the MS program, if they have met the following criteria, as verified on the Bachelor's/Accelerated Master's Transition form:

- 3.0 overall GPA.
- · successfully meeting Mason's requirements for undergraduate degree conferral (graduation),
- · and completing the application for graduation.

Accelerated Pathway Requirements

To maintain the integrity and quality of both the undergraduate and graduate degree programs, undergraduate students interested in taking graduate courses must choose from the following:

Advanced Standing Courses

Students may take up to 12 credits of graduate-level courses that will count as advanced standing (i.e., overlap between the BS/MS program) from the list below:

Code	Title	Credits
CYSE 521	Industrial Control Systems Security	3
CYSE 570	Fundamentals of Operating Systems	3
CYSE 580	Hardware and Cyber Physical Systems	3
CYSE 587	Cyber Security Systems Engineering	3

These courses may be used as technical electives in the Cyber Security Engineering, BS (http://catalog.gmu.edu/colleges-schools/engineering/ cyber-security-engineering/cyber-security-engineering-bs/) program.

For more detailed information on coursework and timeline requirements, see AP.6.7 Bachelor's/Accelerated Master's Degree policies (http:// catalog.gmu.edu/policies/academic/graduate-policies/#ap-6-7).

Degree Conferral

Students must apply to graduate the semester before they expect to complete all BS requirements. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form. At the completion of all MS requirements, a master's degree is conferred.